复数的概念
形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。当z的虚部b=0时,则z为实数;当z的虚部b≠0时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数应用
1、反常积分
在应用层面,复分析常用以计算某些实值的反常函数,藉由复值函数得出。方法有多种,见围道积分方法。
2、量子力学
量子力学中复数是十分重要的,因其理论是建基于复数域上无限维的希尔伯特空间。
3、相对论
如将时间变数视为虚数的话便可简化一些狭义和广义相对论中的时空度量(Metric)方程。
4、应用数学
实际应用中,求解给定差分方程模型的系统,通常首先找出线性差分方程对应的特征方程的所有复特征根r,再将系统以形为f(t) =e的基函数的线性组合表示。
复数的分类
复数可以分为实数和虚数两大类,实数又可分为有理数和无理数两大类。
英语复数的五种形式
复数有以下几种形式:1、一般情况下+s,例如:book-books;2、以s、x结尾+es,box-boxes;bus-buses;3、以辅音字母+y结尾的,变y为i+es,baby-babies;4、含有oo的要变为ee,tooth-teeth。5、以“o“结尾的单词,有生命的单词在后面+es,例如:hero- heroes,tomato- tomatoes;无生命的单词+s,例如:photo- photos,zoo-zoos。
复数的运算法则
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
复数的几何意义
复数的几何意义是:
1、复数z=a+bi与复平面内的点(a)一一对应;
2、复数z=a+bi与向量OZ一一对应,其中的Z点的坐标为(a,b)。
复数x被定义为二元有序实数对(a,b),记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。
共轭复数怎么求
复数的共轭复数很简单,只要把虚部取反即可,例如:复数5/3+4i的共轭复数是5/3-4i。
两个实部相等、虚部互为相反数的复数互为共轭复数。
当虚部不为零时,共轭复数就是实部相等,虚部相反;如果虚部为零,其共轭复数就是自身(当虚部不等于0时也叫共轭虚数)。
根据定义,若z=a+bi(a,b∈R),则=a-bi(a,b∈R)。
- 黄河年均入海水量超300亿立方米 实现连续23年不断流
- 热门:大熊猫国家公园设立超一年 兼顾生态保护与经济发展
- 天天通讯!FBI称正评估抖音海外版可否在美继续运行 中方对此坚决反对
- 当前简讯:112项便民办税措施落实到位 税费支持政策直达快享
- 天天速递!今冬供暖季天然气供应总体有保障 保障人民群众温暖过冬
- 播报:数读世界杯大名单 看看老、少、高、矮都谁排第一?
- 北京朝阳区新增风险点位公布,涉及多个学校、超市、公园等
- 全球报道:引导平台经济健康持续发展
- 见字如晤|张兆和:“多情人不老”
- 世界观速讯丨《海上晨钟》演绎民族品牌的成长传奇
- 世界观焦点:还记得比尔盖茨前妻梅琳达吗?有新男友了
- 一如年少模样
- 衢州风华学校教师宋晴斩获省级比赛一等奖
- 阿根廷队将与阿联酋队进行一场友谊赛后前往卡塔尔
- 卡塔尔世界杯各队大名单全出炉 我们总结了5个“最”
- 世界消息!北京唯一“五线换乘”枢纽!丽泽城市航站楼交通枢纽获批
- 全球新动态:美国今年流感季已致1300人死亡 专家呼吁民众积极接种流感疫苗
- 天天快播:世界首个唾液孕检试剂盒即将上市
- 天天滚动:今年以来我国新开工重大水利工程45项 创历史新高
- 热点聚焦:北京朝阳:继续增加核酸检测点位和通道,优化点位布局
- 美国登月火箭终于发射升空 执行“阿耳忒弥斯1号”任务
- 看热讯:10月民航客运数据发布 主要运营指标同比下滑
- 世界热资讯!绿色菜单引领餐厅低碳消费新风尚
- 燕麦奶不等于燕麦加牛奶
- 四川省总工会职工心理健康服务活动走进遂宁
- 今日关注:北京新增感染者中,147例为隔离观察人员,涉及13区
- 全球播报:贵州大方:非遗传人高光友获“贵州工匠”称号
- 世界通讯!用包裹着火焰的诗句,抚平时光的皱纹|“娜夜诗选”首发
- 2000千克是多少吨?1吨等于多少磅?
- 含“相接”的成语有哪些?人山人海出自哪里?