如何解三元一次方程组?
一般三元一次方程都有3个未知数x,y,z和3个方程组,先化简题目,将其中一个未知数消除,先把第1和第2个方程组平衡后相减,就消除了第一个未知数,再化简后变成新的二元一次方程。
然后把第2和第3个方程组平衡后想减,再消除了一个未知数,得出一个新的二元一次方程,之后再用消元法,将2个二元一次方程平衡后想减,就解出其中一个未知数了。
再将得出那个答案代入其中一个二元一次方程中,就得出另一个未知数数值,再将解出的2个未知数代入其中一个三元一次方程中,解出最后一个未知数了。
例子:
①5x-4y+4z=13
②2x+7y-3z=19
③3x+2y-z=18
2*①-5*②:
(10x-8y+8z)-(10x+35y-15z)=26-95
④43y-23z=69
3*②-2*③:
(6x+21y-9z)-(6x+4y-2z)=57-36
⑤17y-7z=21
17*④-43*⑤:
(731y-391z)-(731y-301z)=1173-903
z=-3 这是第一个解
代入⑤中:
17y-7(-3)=21
y=0 这是第二个解
将z=-3和y=0代入①中:
5x-4(0)+4(-3)=13
x=5 这是第三个解
于是x=5,y=0,z=-3
三元一次方程一般形式
含有3个未知数,且含有未知数的项的次数都是1的整式方程叫做三元一次方程,可化为一般形式ax+by+cz=d(a、b、c≠0)或ax+by+cz+d=0(a、b、c≠0)。
3个未知数:X,Y,Z
未知数的项的次数:a,b,c
什么是三元一次方程?
ax+by+cz=d
三元一次方程是含有三个未知数并且未知数的项的次数都是1的方程,也就是含有3个未知数的一次方程,其一般形式为ax+by+cz=d。由多个一元一次方程组成并含有三个未知数的方程组叫做三元一次方程组,其求解方法一般为利用消元思想使三元变二元,再变一元。
消元法解三元一次方程组
先消去一个未知数,把它变成二元一次方程组求解。
步骤
1、先根据具体题目确定一下要消哪个未知数(假设你看好要消的是未知数x),然后将三个方程(下面用A、B、C表示三个方程)中的两个组合起来(在A和B,或者B和C,或者A和C,三种情形中取一种比较简单的组合),消去未知数x。得到一个含未知数y、z的二元一次方程D。
2、再另外取两个方程(注意不能是第一次已经取过的一种组合。如第一次取A和B,那么这一次你只能取B和C或A和C,这是关键,否则你不能达到消去一个未知数的目的),也消去未知数x(这时不能消另外的未知数y或z,否则前功尽弃),又得一个含未知数y、z的二元一次方程E。
3、将D和E两个方程组合成二元一次方程组,再消去一个未知数,比如y,从而解出z,进而求出y,最后求出x。
消元方法:
至于消元的方法,你可以用“代入消元法”或“加减消元法”中的一种,一般根据系数的特点确定用哪种消元法。通常系数有未知数“1”的用“代入消元法”比较方便,而同一未知数系数有倍数关系的用“加减消元法”比较方便。
三元一次方程组10道
1.2x+7y-z=24 ①
4x-4y+z=-3 ②
x+y=5 ③
解:由①+②得:2x+7y-z+4x-4y+z=24-3
6x+3y=21 ④
得:6x+3y=21 ④
x+y=5 ③
解:由③得x=5-y ⑤
把⑤代入④中
30-6y+3y=21
-3y=-9
y=3
因此:x=2
y=3
z=1
2.一元二次方程单元复习
一、选择题:(每小题32313133353236313431303231363533e59b9ee7ad94313332646465342分,共20分)
1.下列方程中不一定是一元二次方程的是( )
A.(a-3)x2=8(a≠0) B.ax2+bx+c=0
C.(x+3)(x-2)=x+5 D.
2.已知一元二次方程ax2+c=0(a≠0),若方程有解,则必须有C等于( )
A.- B.-1 C. D.不能确定
3.若关于x的方程ax2+2(a-b)x+(b-a)=0有两个相等的实数根,则a:b等于( )
A.-1或2 B.1或 C.- 或1 D.-2或1
4.若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是( )
A.k>- B.k≥- 且k≠0 C.k≥- D.k> 且k≠0
5.已知方程 的两根分别为a, ,则方程 的根是( )
A. B. C. D.
6.关于x的方程x2+2(k+2)x+k2=0的两个实数根之和大于-4,则k的取值范围是( )
A.k>-1 B.k<0 C.-1
7.若方程x2-kx+6=0的两个实数根分别比方程x2+kx+6=0的两个实数根大5,则k的值为( )
A.2 B. C.5 D.-5
8.使分式 的值等于零的x是( )
A.6 B.-1或6 C.-1 D.-6
9.方程x2-4│x│+3=0的解是( )
A.x=±1或x=±3 B.x=1和x=3 C.x=-1或x=-3 D.无实数根
10.如果关于x的方程x2-k2-16=0和x2-3k+12=0有相同的实数根,那么k的值是( )
A.-7 B.-7或4 C.-4 D.4
三元一次方程例题及解法
- 黄河年均入海水量超300亿立方米 实现连续23年不断流
- 热门:大熊猫国家公园设立超一年 兼顾生态保护与经济发展
- 天天通讯!FBI称正评估抖音海外版可否在美继续运行 中方对此坚决反对
- 当前简讯:112项便民办税措施落实到位 税费支持政策直达快享
- 天天速递!今冬供暖季天然气供应总体有保障 保障人民群众温暖过冬
- 播报:数读世界杯大名单 看看老、少、高、矮都谁排第一?
- 北京朝阳区新增风险点位公布,涉及多个学校、超市、公园等
- 全球报道:引导平台经济健康持续发展
- 见字如晤|张兆和:“多情人不老”
- 世界观速讯丨《海上晨钟》演绎民族品牌的成长传奇
- 世界观焦点:还记得比尔盖茨前妻梅琳达吗?有新男友了
- 一如年少模样
- 衢州风华学校教师宋晴斩获省级比赛一等奖
- 阿根廷队将与阿联酋队进行一场友谊赛后前往卡塔尔
- 卡塔尔世界杯各队大名单全出炉 我们总结了5个“最”
- 世界消息!北京唯一“五线换乘”枢纽!丽泽城市航站楼交通枢纽获批
- 全球新动态:美国今年流感季已致1300人死亡 专家呼吁民众积极接种流感疫苗
- 天天快播:世界首个唾液孕检试剂盒即将上市
- 天天滚动:今年以来我国新开工重大水利工程45项 创历史新高
- 热点聚焦:北京朝阳:继续增加核酸检测点位和通道,优化点位布局
- 美国登月火箭终于发射升空 执行“阿耳忒弥斯1号”任务
- 看热讯:10月民航客运数据发布 主要运营指标同比下滑
- 世界热资讯!绿色菜单引领餐厅低碳消费新风尚
- 燕麦奶不等于燕麦加牛奶
- 四川省总工会职工心理健康服务活动走进遂宁
- 今日关注:北京新增感染者中,147例为隔离观察人员,涉及13区
- 全球播报:贵州大方:非遗传人高光友获“贵州工匠”称号
- 世界通讯!用包裹着火焰的诗句,抚平时光的皱纹|“娜夜诗选”首发
- 2000千克是多少吨?1吨等于多少磅?
- 含“相接”的成语有哪些?人山人海出自哪里?